Բովանդակություն:
- Քայլ 1: Պահանջվում է սարքավորում
- Քայլ 2: Սարքավորման միացում
- Քայլ 3. Codeնշման չափման ծածկագիր
- Քայլ 4: Դիմումներ
Video: Ureնշման չափում `օգտագործելով CPS120 և Arduino Nano: 4 քայլ
2024 Հեղինակ: John Day | [email protected]. Վերջին փոփոխված: 2024-01-30 09:46
CPS120- ը բարձրորակ և էժան բացունակ ճնշման բացարձակ սենսոր է `լիովին փոխհատուցվող ելքով: Այն սպառում է շատ ավելի քիչ էներգիա և ներառում է ճնշման չափման համար չափազանց փոքր միկրոէլեկտրամեխանիկական սենսոր (MEMS): Սիգմա-դելտայի վրա հիմնված ADC- ն նույնպես մարմնավորված է փոխհատուցվող արտադրանքի պահանջը կատարելու համար:
Այս ձեռնարկում պատկերված է CPS120 սենսորային մոդուլի միջերեսումը arduino nano- ի հետ: Pressureնշման արժեքները կարդալու համար մենք օգտագործել ենք I2c ադապտեր ունեցող ֆոտոնը: Այս I2C ադապտերը դյուրին և հուսալի է դարձնում սենսորային մոդուլի հետ կապը:
Քայլ 1: Պահանջվում է սարքավորում
Նյութերը, որոնք մեզ անհրաժեշտ են մեր նպատակին հասնելու համար, ներառում են հետևյալ ապարատային բաղադրիչները.
1. CPS120
2. Արդուինո Նանո
3. I2C մալուխ
4. I2C վահան Arduino nano- ի համար
Քայլ 2: Սարքավորման միացում
Սարքավորումների միացման բաժինը հիմնականում բացատրում է սենսորի և arduino nano- ի միջև պահանջվող լարերի միացումները: Connectionsանկալի ելքի համար ցանկացած համակարգի վրա աշխատելիս հիմնական անհրաժեշտությունն է հիմնական կապերի ապահովումը: Այսպիսով, անհրաժեշտ կապերը հետևյալն են.
CPS120- ը կաշխատի I2C- ով: Ահա միացման սխեմայի օրինակ, որը ցույց է տալիս, թե ինչպես միացնել սենսորի յուրաքանչյուր միջերեսը:
Տուփից դուրս, տախտակը կազմաձևված է I2C ինտերֆեյսի համար, ուստի խորհուրդ ենք տալիս օգտագործել այս կապը, եթե այլապես ագնոստիկ եք: Ձեզ անհրաժեշտ է չորս լար:
Միայն չորս միացում է պահանջվում Vcc, Gnd, SCL և SDA կապում, որոնք միացված են I2C մալուխի օգնությամբ:
Այս կապերը ցուցադրվում են վերը նշված նկարներում:
Քայլ 3. Codeնշման չափման ծածկագիր
Եկեք հիմա սկսենք Arduino կոդով:
Arduino- ի հետ սենսորային մոդուլն օգտագործելիս մենք ներառում ենք Wire.h գրադարանը: «Լար» գրադարանը պարունակում է գործառույթներ, որոնք հեշտացնում են i2c հաղորդակցությունը սենսորի և Arduino տախտակի միջև:
Օգտվողի հարմարության համար ստորև տրված է arduino- ի ամբողջ ծածկագիրը.
#ներառում
// CPS120 I2C հասցեն ՝ 0x28 (40)
#սահմանեք Addr 0x28
դատարկ կարգավորում ()
{
// Նախնականացնել I2C հաղորդակցությունը
Wire.begin ();
// Սկզբնականացնել սերիական հաղորդակցությունը, սահմանել բաուդ արագություն = 9600
Serial.begin (9600);
}
դատարկ շրջան ()
{
անստորագիր int տվյալներ [4];
// Սկսել I2C փոխանցումը
Wire.beginTransmission (Addr);
// Պահանջել 4 բայթ տվյալներ
Մետաղալար. Խնդրում ենք (Addr, 4);
// Կարդացեք 4 բայթ տվյալներ
// ճնշում msb, ճնշում lsb, ջերմաստիճան msb, ջերմաստիճան lsb
եթե (Wire.available () == 4)
{
տվյալներ [0] = Wire.read ();
տվյալներ [1] = Wire.read ();
տվյալներ [2] = Wire.read ();
տվյալներ [3] = Wire.read ();
ուշացում (300);
// Դադարեցնել I2C փոխանցումը
Wire.endTransmission ();
// Փոխարկեք տվյալները 14 բիթ
լողացող ճնշում = ((((տվյալներ [0] & 0x3F) * 265 + տվյալներ [1]) / 16384.0) * 90.0) + 30.0;
float cTemp = ((((տվյալները [2] * 256) + (տվյալները [3] & 0xFC)) / 4.0) * (165.0 / 16384.0)) - 40.0;
float fTemp = cTemp * 1.8 + 32;
// Ելքային տվյալները սերիական մոնիտորին
Serial.print («Pressնշումն է ՝»);
Serial.print (ճնշում);
Serial.println ("kPa");
Serial.print ("Cերմաստիճանը Celsius:");
Serial.print (cTemp);
Serial.println ("C");
Serial.print («Fերմաստիճանը Ֆարենհայտում.»);
Serial.print (fTemp);
Serial.println ("F");
ուշացում (500);
}
}
Լարային գրադարանում Wire.write () և Wire.read () օգտագործվում են հրամանները գրելու և սենսորի ելքը կարդալու համար:
Serial.print () և Serial.println () օգտագործվում են սենսորի ելքը Arduino IDE- ի սերիական մոնիտորի վրա ցուցադրելու համար:
Սենսորի ելքը ցուցադրվում է վերևի նկարում:
Քայլ 4: Դիմումներ
CPS120- ն ունի տարբեր ծրագրեր: Այն կարող է օգտագործվել շարժական և ստացիոնար բարոմետրերում, բարձրաչափերում և այլն: ureնշումը կարևոր պարամետր է եղանակային պայմանները որոշելու համար և հաշվի առնելով, որ այս տվիչը կարող է տեղադրվել նաև եղանակային կայաններում: Այն կարող է ներառվել օդային կոնտոլ համակարգերում, ինչպես նաև վակուումային համակարգերում:
Խորհուրդ ենք տալիս:
Մագնիսական դաշտի չափում ՝ օգտագործելով HMC5883 և Arduino Nano: 4 քայլ
HMC5883- ի և Arduino Nano- ի միջոցով մագնիսական դաշտի չափում. HMC5883- ը թվային կողմնացույց է, որը նախատեսված է ցածր դաշտի մագնիսական զգայարանների համար: Այս սարքն ունի մագնիսական դաշտի լայն շրջանակ ՝ +/- 8 Օէ և ելքային արագություն ՝ 160 Հց: HMC5883 սենսորը ներառում է ժապավենների ավտոմատ հանող շարժիչներ, օֆսեթ չեղարկում և
Խոնավության և ջերմաստիճանի չափում ՝ օգտագործելով HIH6130 և Arduino Nano: 4 քայլ
Խոնավության և ջերմաստիճանի չափում HIH6130- ի և Arduino Nano- ի միջոցով. HIH6130- ը խոնավության և ջերմաստիճանի տվիչ է `թվային ելքով: Այս տվիչները ապահովում են. 4% RH ճշգրտության մակարդակ: Արդյունաբերության առաջատար երկարաժամկետ կայունությամբ, իսկական ջերմաստիճանի փոխհատուցվող թվային I2C- ով, արդյունաբերության առաջատար հուսալիությամբ, էներգաարդյունավետությամբ
Խոնավության և ջերմաստիճանի չափում ՝ օգտագործելով HTS221 և Arduino Nano: 4 քայլ
Խոնավության և ջերմաստիճանի չափում ՝ օգտագործելով HTS221 և Arduino Nano: HTS221- ը ծայրահեղ կոմպակտ տարողունակ թվային սենսոր է հարաբերական խոնավության և ջերմաստիճանի համար: Այն ներառում է զգայուն տարր և խառը ազդանշանների կիրառման հատուկ ինտեգրալ միացում (ASIC) ՝ թվային սերիայի միջոցով չափման տեղեկատվությունը տրամադրելու համար
Raspberry Pi CPS120 ureնշման ցուցիչ Java ձեռնարկ. 4 քայլ
Raspberry Pi CPS120 ureնշման տվիչ Java ձեռնարկ. CPS120- ը բարձրորակ և էժան բացունակ ճնշման բացարձակ սենսոր է `լիովին փոխհատուցվող ելքով: Այն սպառում է շատ ավելի քիչ էներգիա և ներառում է ճնշման չափման համար չափազանց փոքր միկրոէլեկտրամեխանիկական սենսոր (MEMS): Սիգմա-դելտայի վրա հիմնված
Pressնշման չափում `օգտագործելով CPS120 և մասնիկի ֆոտոն` 4 քայլ
Pressնշման չափում CPS120- ի և մասնիկի ֆոտոնի միջոցով. CPS120- ը բարձրորակ և էժան բացունակ ճնշման բացարձակ սենսոր է `լիովին փոխհատուցվող ելքով: Այն սպառում է շատ ավելի քիչ էներգիա և ներառում է ճնշման չափման համար չափազանց փոքր միկրոէլեկտրամեխանիկական սենսոր (MEMS): Սիգմա-դելտայի վրա հիմնված